
Volume of a Hypersphere C.E. Mungan, Summer 2000

Problem:  Find the volume, Vn, of an n-dimensional hypersphere of radius R. The three lowest
values of n are well known. In one dimension, we have a line segment extending a distance R in
each direction, so that its length is V R1 2= . The case of n = 2 corresponds to a circle, whose area
is V R2

2=π . Finally, n = 3  corresponds to a sphere of volume V R3
34 3= π / . Derive a compact

formula for the general case.

Hint:  (Courtesy of Bob Sciamanda.) Evidently we can write the answer as V R Rn
n

n( ) = υ  where
υn nV≡ ( )1  is the volume of a hypersphere of unit radius. Using Cavalieri’s principle, we can
calculate the volume of any closed solid as
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where A(z) is the cross-sectional area of a slab of thickness dz cut through the solid like a loaf of
bread, and we integrate from zi  to z f  along any arbitrary axis z. In the present case, it is
convenient to choose z R= cosθ  to be the conventional polar axis, where we integrate upward
from θ πi =  to θ f = 0 , and where the area of a slice through the sphere is V r2( )  with r R= sinθ .
Making these substitutions in Eq. (1) gives
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The reader is invited to perform this simple integral (by using the identity sin cos2 21θ θ= − ) and
check that it correctly gives 4/3, as implied in the problem statement above. Generalizing
Eq. (2) to n dimensions immediately gives
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n n
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The problem is thus reduced to performing this definite integral and then finding a non-recursive
formula for υn .

Solution:  The integral is recognized as a beta function, which is easily recast in terms of gamma
functions as
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Recall that the gamma function is a generalization of the factorial function, Γ Γ( ) ( )n n n+ =1 ,
where Γ( )1 1=  and Γ( / )1 2 = π . First consider the case where n is even. We then have
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so that
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Similarly, if n is odd we have
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which implies that
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  (if n odd). (8)

Notice from this last equation that I1 2= . Equation (3) will now correctly reproduce the one-
dimensional value υ1 2=  if we define υ0 1≡ . Next, it is left as a straightforward exercise for the

reader to verify from Eqs. (6) and (8) that
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regardless of whether n is even or odd. Substituting this into Eq. (3) results in a near-miraculous
simplification,
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where I made use of the facts that υ0 1=  and υ1 2=  to terminate the even and odd recursions,

respectively. It is easy to show that both of these cases can be written in the single compact way,
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which completes the exercise. The first six values are tabulated below.
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1 2 1
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2 π 1 π
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3 π

4 3
8 π 2 1
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5 16
15
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8 π 8
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6 5
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